Current Projects


03/2020 – 02/2023 – RealNano

 2020 realnano logoeu

In-line and Real-time Nano-characterization technologies for the high yield manufacturing of Flexible Organic Electronics

Organic & Printed Electronics (OE) nanolayers is one of the most rapidly emerging sector of Nano Science and Technology. While the OE market is rapidly growing worldwide, from 31.7 B$ in 2018 to 77.3 B$ in 2029, the industrial manufacturing cannot meet the more extensive commercialization demands on speed, reliability, materials quality, final product efficiency, and stability.

The RealNano project will play a significant role in the digital transformation of the EU industries, with an ambitious aim to demonstrate a yield improvement of up to 90%, in combination with above 30% reduction on wastes and resources for nanomaterials. In order to accomplish this, novel and fast real-time nano-characterization material tools & methodologies based on spectroscopic ellipsometry, raman spectroscopy, imaging photoluminescence, and laser beam induced current mapping will be integrated to in-line R2R printing - and organic vapor phase deposition pilot-to-production lines.

In this project, Coatema is focussing on the mechanical integration of the developed characterization tools and the mechanical improvement of the R2R pilot-to-production line.



10/2018 – 09/2021 – OLEDSOLAR


2020 oledsolar logo bw 2020 OLEG EU Text en


Innovative manufacturing of opto-electronic devices

Emerging opto-electronic devices open the way for exciting new applications every day. Meeting industry’s requirements for mass production of such smart next-generation devices requires addressing a range of emerging challenges to enable best-value production at high manufacturing volumes and optimal efficiency.

OLEDSOLAR aims to tackle these challenges by developing innovative manufacturing processes for critical steps in the production of opto-electronic devices, including Organic LED (OLED), organic photovoltaics (OPV) and copper indium gallium selenide (CIGS) based solar cells. Related project activities include scaling up reconfigurable high-yield processes, testing them in pilot lines and validating them in production lines.

A complete system of inspection, quality control, functional testing and measurements using advanced systems and sensors will be optimised in the project for efficient manufacturing of opto-electronics parts. A special focus here is on automation and advance data processing for the overall control and monitoring of roll-to-roll (R2R) and sheet-to-sheet (S2S) manufacturing processes. At the same time, recycling and re-use strategies will be developed to ensure resource efficiency and reduction of high-value product waste.

Coatema’s role is to further improve registration in R2R technologies at the Coatema R&D centre and at the Printocent demo line at VTT. Here Coatema will integrate the registration camera by VTT into the demo line and improve machinery in order to improve the overlay between consecutive printing jobs down to an accuracy of 50 micrometers or better for screen printing technology.



09/2019 – 08/2022 – EffiLayers

2020 Effilayers logo2020 Finanzierung effilayers

„Process optimization regarding the roll-to-roll production of novel highly efficient organic photovoltaic cells-EffiLayers“

The EffiLayers project as the successor of Photonflex (2016 – 2019) and Flexlas (2012 – 2015) is focussing on the development, process optimization, and production of flexible, highly efficient, and ultra-thin organic solar cells using a roll-to-roll coating system.

Organic photovoltaic cells currently still exhibit lower efficiency and durability compared to traditional silicon-based solar cells. The qualification of novel and efficient materials, as well as the optimization of the coating application by means of roll-to-roll coating equipment, should contribute to a significant increase in efficiency.

Through wet chemical coating processes, the functional layers are applied in the nanometer scale by using a heatable slot-die and processed with different laser sources (short pulse and ultra-short pulse range). After photonic laser drying and thin-film ablation, the OPV cell is protectively sealed by laser encapsulation with a barrier film. The individual processes are monitored by various sensors, and a process control system is implemented.

In this project, Coatema is focusing in particular on the modification of the entire slot-die application process. The novel swiveling die-module enables a stable process through variable adjustment of the die in the range of 8 to 12 o’clock. A proposed horizontal mechanism for adjusting the die ensures precise adjustment or positioning of the substrate to be coated during multiple coating processes. For a uniform application of the substrate, an electrically heated die is used.

In collaboration with the partners, the new process optimizations of the roll-to-roll production are demonstrated and evaluated for the novel OPV cell.


06/2017 – 5/2020 – Flex-G

flex g BMWT FKZ 03ET1470D

Development of R2R technologies for producing flexible facade elements with switchable energy transmissibility.

The joint project FLEX-G systematically investigates technologies for fabrication of translucent and transparent roof and facade elements with integrated opto-electronic devices, to allow dynamic switching of the total energy transmittance (g-value) of these elements. Therefore, flexible electrochromic layer stacks are directly applied on ETFE web surface in Roll-to-Roll coating processes. ETFE is a common material used for membrane roofs and facades in event halls, airports or railway stations. A second part of the project deals with technologies for direct integration of large-area flexible solar cells based on organic photovoltaics (OPV) into ETFE membrane elements. The project Flex-G contributes thus significantly to energy saving and energy harvesting technologies in buildings. Flex-G thereby supports the aim of the government to reduce the primary energy demand until 2050 to 50 % through these developments.



04/2017 – 03/2020 – SolGel-PV

solgel BMBF FKZ 0324151C

Multifunctional Sol-Gel layers for the photovoltaic industry.

In the SOLGEL-PV project nanoscale sol-gel layers for usage in solar cells layers are produced, deposited and structured. They shall be demonstrated in an innovative applications: (i) antireflex structure that uses the Mie-resonance for a better light coupling, (ii) at the backs contact of the first solar cel for a better optical performance and higher adhesion and (iii) as a conducting and adhesive connection layer for a cost efficient realization of tandem solar cells. The layers are deposited by in-line capable methods. The nanostructuring is executed in a roll-to-plate technology.

The project incorporates developments in the material science as well as in the regime of process techniques. Sol-gels will be produced by tailored synthesis for different prototype applications. Additionally, deposition and embossing processes for large scale applications are realized.

The following objectives for the three defined prototype applications are specified: Due to the embossed Mie-resonators in the sol-gels, better properties compared to an iso-textur shall be achieved. The sol-gel interlayer at the backside contact shall lead to a higher short-circuit current density of 0.5 mA/cm² higher than for an Al/Si contact due to the reduction of parasitic absorption. Simultaneously the adhesion will be high enough for a later cabling of the modules. With a connection layer for tandem solar cells a III-V wafer and a Si-Wafer shall be permanently connected to each other with a high transparency (>98 %) and a lower voltage loss (< 1mV).

The developed, innovative and cost efficient technologies as well as the higher energy yield are leading to a higher cost efficiency and brings the involved companies a unique selling point and thus a competitive advantage.



12/2016 – 11/2019 – PowderSizing

powdersizing BMWT FKZ ZF4099702BL6

Process- and materialefficient production of thermoplastic-glass bicomponent fibers for the production of continuous-fiber-reinforced thermoplastic components

The mechanical properties of thermoplastic composites depend on the fibre volume content, moistening and distribution of the glass fibres and thus on the strength distribution. The theoretical performance limit is not completely fulfilled by already available composites based on hybrid yarns or film-stacking. In addition, the coating speed is limited to 100 m/min leading to a low economic efficiency. Therefore, new technologies are necessary to achieve the theoretical performance limit in real industrial processes such that the composites could also be used in aircraft engineering. Currently the semi-finished materials are mostly used in the automotive sector. The objective of this research project is the development of a coating system leading to a speed of 2,000 m/min, by which all filaments inside the composite are equally coated and the economic efficiency is increased significantly.



01/2018 – 12/2020 – Supersmart

Logo Supersmart supersmart eu

Scale-Up of Printed Electronics Recyclable SMART materials

In day to day products, including labels and packaging, there is a rising consumer demand for smart products, that is to say, objects that are able to be part of a digital ecosystem. Embedding sensors and communications technologies while minimizing the environmental impact of these smart products is a key challenge for the future. The major way of achieving this is to work on the base materials of the electronics components to be embedded in, by providing organic materials instead of rare and toxic inorganic ones when applicable. That is the objective of the SUPERSMART project which will enable the direct printing on paper of sensors, displays and electronics instead of bulk conventional electronics devices. It will make the recyclability of such smart products easy. Lead by Arkema, a world-wide chemical actor, together with Arjowiggins, providing technical papers for printed electronics, leading technical organizations (CEA, FraunhoferInstitute, Joanneum Research), first-class universities (University de Bordeaux and Lisbon) and innovative SMEs (Coatema, Luquet & Duranton), the SUPERSMART project aims at scaling up printable smart materials for the smart and recyclable products of the future.



01/2018 – 12/2021 – Greensense

greensense greensense eu

Sustainable, wireless, autonomous nanocellulose-based quantitative Drugs-of-Abuse (DoA) biosensing platform

Printed electronics is one of the fastest growing technologies in the world. Paper and plastic are two types of flexible materials that constitute key substrates in the development of future flexible electronic devices. On the contrary of those based on more conventional plastic substrates, paper-based electronics, made from cellulose, have the advantages of low cost, recyclability and can be expected to have a significant impact in the reduction of environmental impact of "electronic trash" and in providing new opportunities to the pulp/paper manufacturing industry. Unfortunately, the surface properties of conventional paper are not suitable for printed electronics and, typically plastic coatings based on fossil-oil polymers are applied. From a sustainable point of view, this has augmented the interest in alternative renewable biopolymer films and coatings with similar properties. Among the different alternatives, nanocellulose (NC) based films with strength, high aspect ratio, transparency and low porosity and smooth surface roughness are a promising potential alternative.

In the project GREENSENSE we merge healthcare diagnostics and printed electronics in the form of a fully-integrated biosensing platform using nanocellulose. The biosensing platform with the newly developed printed DoA biosensors will integrate different NC-based printed electronic components (supercapacitor and/or a primary battery as printed energy storage (E. storage), display and NFC antenna) and a single microchip to have energy autonomy, wireless communication and to be easy for the user to read the results. High output printing techniques, such as sheet-to-sheet (S2S) screen printing and/or inkjet printing will be used for the printing of the different functional inks onto NC-based substrates. The final NC-based biosensing platform will be easy to operate, flexible, mass producible, cost-effective, environmentally friendly, disposable, and recyclable and will have low power and energy consumption.



10/2017 – 09/2020 – SOLID

solid BMWT FKZ 03XP0129C

Innovative solid state batteries based on sol-gel materials with a Li-metal anode and implemented 3D structure.

One key factor regarding the electro mobility future are inherently safe and power efficient battery technologies. Solid state approaches have the potential to fulfil these demands. Up to now the used processes and methods are not economical efficient scalable and the energy density is too low.

The objective within the project SOLID is the investigation of a solid state batteries based upon cost efficient production methods that are completely transferable to industrial scale respectively are already established in other sectors. The solid state approach enables one to use new cell concepts leading to a lower part of electro-chemical inactive materials and a lower cabling complexity. Starting from a material research for cathode- and electrolyte layers by the Fraunhofer ISC as well as an anode development by Applied Material solid state batteries in single layer format can be produced. Besides this, the Fraunhofer ISE investigates structuring of the electrical conductor and the cathode layer to reduce the intrinsic high resistances. Additionally LUNOVU develops novel laser-based methods for the crystallization behaviour of the cathode- and electrolyte layers. Coatema is going to transfer all methods to continuous processes or respectively Coatema is going to investigate the opportunity for an integration into a continuous process. The whole project is led by project coordinator Varta that is going to develop a new cell concept cooperating with all partners. Finally, the operational reliability of this solid state approaches is proven by a demonstrator.

The battery market is strongly dominated by Asian manufacturers. To participate in this market or even acquire a leadership it is important to execute basic research in the field of this future technologies. This project will create jobs along the whole supply chain, by the project lead of German small and medium size companies that use established German technologies.

Find us on Instagramm
Virtueller Rundgang Technikum
Follow Us