

Overview

Introduction

Introduction

Group of companies

Summary

Overview

Storage-systems	Energy-carrier	Energy-density		Power-	Lifetime /	Self-
		Wh/kg	Wh/l	density	Cycles no.	discharge
Capacitor	e ⁻ Super cap	4	5	++	+ / ++	
Primary cells	Zn-C	60 - 100	100 – 150	-	o /	+
	Zn-MnO ₂	100 – 150	200 – 300	0	+ /	++
	Zn-0 ₂	approx. 300	approx. 450	+	o /	+
Secondary cells	Pb-PbO2	20 - 40	50 - 100	0	o / o	+
	Ni-Cd	40 - 60	100 - 150	+	++ / ++	-
	Ni-MeH	60 – 90	150 – 250	+	++ / ++	(++)
	Ag-Zn	80 - 120	150 – 250	++	- / -	++
	Li-Ion	100 – 200	150 – 500	+	+ / +	+
Fuel cells	H ₂ (300 Bar)	33.000	2400	0		++
	H ₂ (liquid)	33.000	750	0		0
	H ₂ (MeH)	600	3200	0		++
	Methanol	5600	4400	-		++
Combustion engines	Petrol	12700	8800	++		++
	Diesel fuel	11600	9700	++		++

Battery basics

Battery basics

Overview

Technologies & processes – process parameters

Process parameters are:

- ✓ Operation speed
- Rheology of coating and printing inks
- ✓ Substrate condition
- ✓ Tension control MD / CD
- ✓ Edge control
- \checkmark Resolution and registration accuracy of printing / laminating systems
- Precision of coating operations
- Curing / drying / crosslinking

Processes – definition of coating systems

Category of coating methods	Examples of coating methods belonging to the category	Characteristics
Self-metered	 Dip roll Nip forward roll Reverse roll 	 Wet thickness is determined by the conditions of the coating meniscus
Doctored	 Mayer rod Blade / Knife Air knife Dip & scrape 	 Post applicator device determines the wet thickness
Pre-metered	 ✓ Slot die ✓ Slide curtain ✓ Spray 	 All the ink fed into an applicator is transferred to the web

Introduction

Introduction

Printing systems

Coating parameters							
Coating chemistry	Coating processes	Process control	Drying				
 Rheology Viscosity Viscoelasticity Type of solvents Solid content Van der Waals force Sheer ratio Adhesion/Cohesion 	 Coating systems Single or multilayer coatings Direct coatings Transfer (indirect) coatings Substrate speed Layer thickness Coating accuracy 	 Process layout Tension control system Material guiding system Inline parameter control Quality control 	 Convection drying Contact drying Infrared drying Sintering NIR High frequency UV crosslinking systems 				
Substrate	Pretreatment	Environment	Finishing				
 Surface tension Dimension stability Surface structure Contact angle 	CoronaPlasmaCleaning	HumidityTemperatureInert conditions	CalendaringEmbossingSlitting				

Coating systems for battery application

Knife coating

Variation of the coating weight ✓ Roller knife 10 - 1.250 g/m² \checkmark Air knife 5 – 6 to 60 g/m² **Range of viscosity** ✓ Paste (1000) 100 - 50 000 mPas ✓ Foam 10 000 - 25 000 mPas ✓ Air knife 5 – 10 000 mPas

Commabar coating

Variation of the coating
weight
✓ Air knife
5 - 6 to 1.250 g/m²

Range of viscosity

- ✓ Paste
 - 5 6 to 60 g/m^2

🗸 Foam

10 000 - 25 000 mPas

Gravur coating

Variation of the coating weight ✓ 2 – 200 g/m²

Range of viscosity ✓ 1 – 15 000 mPas

Rotary screen coating

Variation of the coating weight ✓ 10 – 300 g/m²

Range of viscosity

- ✓ Paste
 - 10 000 80 000 mPas
- ✓ Paste

10 000 - 25 000 mPas

Powder scattering coating

Variation of the coating weight ✓ 10 – 300 g/m²

Range of viscosity (mPas) ✓ Application of powdery materials

Slot die coating

Variation of the coating weight ✓ 1 - 200 g/m²

Range of viscosity ✓ 1 – 30 000 mPas

New design principle

Slot die system

Technologies & processes – slot die coating

Operating a slot die

- Meniscus is formed between die lips and substrate
- ✓ Adhesive stabilization of meniscus by die lips
- ✓ Very low minimum flow rate possible
- ✓ For a stable process the range of rheological parameters is limited

Basics of slot die coating – range of parameters

- ✓ Printing speed 0.1 - >1000 m/min
- ✓ Ink viscosity 1 – 30 000 mPas
- ✓ Layer thickness 0,1 - >200 µm
- ✓ Coating accuracy <1% (2 - 5%)</p>
- ✓ Coating width up to approx. 3 m

Basic principle from reservoir Slot Dosing pump die -Manifold (Distribution chamber) Meniscus coated layer Slot substrate Coating roller

Bead mode

- Meniscus is formed between die lips and substrate
- ✓ Adhesive stabilization of meniscus by die lips
- ✓ Very low minimum flow rate possible
- ✓ For a stable process the range of rheological parameters is limited
- Preferrably for low coating speed

Curtain mode

- Freely falling liquid curtain
- ✓ No adhesive stabilization of wetting line by die lips
- Curtain width shrinks while falling
- Minimum flow rate necessary for stable curtain
- Preferrable for high coating speed

Impregnation mode

- ✓ Slot die acts as an impregnator with defined liquid release
- Sucking strength of web must be smaller than release strength of the slot die
- ✓ Slot die with high retention ability has to be used
- Preferrably for low porosity nonwovens

Homogeneous coating with slot dies

Target of homogeneity

The target in thickness profile depends on the application. E.g. window foils: target is determined by sensitivity of human eye.

 ✓ Standard optical density for window foils: D = 0.6 - 0.7 (absortion 75 - 80 %)
 ✓ In this range the human eye detects density variations of: ΔD = 0.01 - 0.003 (depending on the regularity of the variations)
 ✓ Density is proportional to layer thickness:

 ✓ Density is proportional to layer thickness:

$$I = I_0 \cdot 10^{-ax}$$
; $D = -log(I/I_0) = a x$; $\Delta D/D = \Delta X/X$

 \rightarrow Target layer homogeneity: 1.7 – 0.4 %

Coating systems

Why should a slot die coat homogeneously?

Experimental thickness profile

Improving the coating profile

- Large manifold, long slot area, highly parallel lips (standard)
- ✓ Coat hanger design
 - \checkmark Profile is compensated by a tilted manifold
 - Conical manifold cross section to keep flow speed constant (optional to prevent precipitation)
 - \checkmark Works perfect for adequate rheology only
- ✓ Slot width adjustment
 - ✓ Slot width is locally narrowed or widened to adjust the local flow resistence
 - Slot width can be modified by microns only. So despite adjustability the die has nevertheless to be highly precise and a sufficient manifold volume is necessary (the adjustment is a fine tuning only).

Coat hanger design

Manifold small to minimize dead volume (optional conical to prevent precipitation)

Tilted manifold to correct the pressure profile

Long slot area

Coatema standard layout – one design among many available

Coating systems

Basics of slot die coating – slot die examples

100 mm, 11 o'clock

300 mm, 9 oʻclock

500 mm, slightly tilted

300 mm, double sided

Structured coating – levels of complexity

	Web direction	Current status		
1		Full area, homogeneous	Requirements are met, thickness profile variation of 0.5 %	
2		Stripes downweb	Requirements are met, good edge definition	
3		Stripes crossweb (intermittent coating)	Requirements are partially met, edge definition of 0.5 – 1 mm depending on liquid	
4	abc	Arbitrary patterns	Requirements are not met, concepts for realization exist, research project is going on	

Structured coating – downweb stripes

Downweb stripes of different width ...

... are made by appropriate shims, lasercut from steel or kapton

Structured coating – crossweb stripes (intermittent)

Structured coating – well defined edges at high viscosity

Two different stripe patterns, one on top of the other

Standard techniques for intermittent coating

Pump: stop – reverse – restart

Slot die body:

move back - move forth to minimum gap move back to working gap (wedge procedure)

Slot die internal:

stop and redirect the flow by shutters and valves. Pump flow continues, die flow stops.

All 3 techniques (single or in combination) work quite well, if the viscosity is rather high and the required edge definition is not more precise than around 1 mm. All techniques may be combined with a vacuum pump upstream to stabilize the meniscus and suck away residual liquid.

Structured coating - reason for bad edges at low viscosity

The mensicus volume between the slot die and the substrate has to be interrupted. Low viscous liquids do not break along a straight line. So the meniscus has to be sucked back and restored as fast as possible to achieve a clear defined edge.

If the viscosity is too low, all of the three before mentioned methods are too slow and too indirect to do this.

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Structured coating – new concepts for low viscosity liquids

Two new concepts allow to interrupt and restore the meniscus much faster:

- ✓ Double chamber slot die with modified chamber geometry and Piezo driven suck back pump
- Switching lip slot die with a Piezo driven lip opening mechanism that sucks back the meniscus right where it is

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Coating systems

Structured coating – the switching slot die lip

Slot die with movable lips: coating mode

coating works as usual

C.S. PUBLIC PRIVATE

Coating systems

Structured coating – the switching slot die lip

Slot die with movable lips: stop mode

- L lip
- V slot volume
- B bendable lip
- S bending slot

Bendable lip B flips open Volume V increases and sucks away the meniscus

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Structured coating – technical implementation with Piezo-Drive

Structured coating – technical implementation with bendable lips

Structured coating – switching slot die: first results

Coating systems

Structured coating – stages of lip motion

Structured coating – ongoing trials: stripe coating of fuel cell paste

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Theory

$$D = \sqrt[3]{\frac{12 \cdot \eta \cdot l \cdot vp}{\Delta p \cdot B}} \frac{\Delta p = \frac{12 \cdot \eta \cdot l \cdot Vp}{D^3 \cdot B}}{\frac{dV_p}{dt}} = B \cdot v \cdot x$$

$$V_{max} = C(d) \cdot \left[\frac{\sigma \cdot h}{d - h} + \Delta p \cdot \frac{d}{\eta \cdot B} \right] \cdot \frac{h}{\eta \cdot b}$$

Theoretical background

Continuity equation (conservation of mass)

Any flow of liquids is described by a set of differential equations:

To describe the meniscus flow of a slot die means, to solve these differential equations for given boundary conditions.

Can be done by appropriate computer programs.

$$\frac{\partial v}{\partial t} + (v\nabla) v = \frac{(-\nabla p + \eta \Delta v + f)}{\rho}$$

Navier-Stokes-equations (equations of motion for incompressible fluids, $\rho = \text{const}$) $\Delta, \nabla = \text{differential operators}$

Theoretical background

$$\frac{dv_p}{dt} = B \cdot v \cdot x$$

- *B* Coating thickness wet
- Coating speed
- Coating width

Flow rate of the pump

Contrary to a widespread misunderstanding the wet coating thickness does not depend on the shim thickness.

Shim thickness and distance to substrate only help to stabilize the meniscus.

Calculation of internal pressure

Calculation of shim thickness

Slot die mathematics

Calculation of shear force on meniscus

Force caused by shear: This force pulls the meniscus to the right

Shear force in general: $F_s = \eta \cdot A \cdot \frac{v}{d}$

The shear takes place mainly over the thickness h: $F_s = \eta \cdot B \cdot \frac{v}{h}$

Calculation of surface tension force on meniscus

✓ Force caused by surface tension: This force pulls the meniscus to the left ✓ Surface caused tension σ caused pressure p inside of a fluid sphere: $p = \frac{2\sigma}{r}$ ✓ In the meniscus the pressure is approximately: $p = \frac{\sigma}{d-h}$ ✓ The corresponding pressure force is: $F = p \cdot A = p \cdot B \cdot h = \sigma \cdot B \cdot \frac{\sigma}{d-h}$

Calculation of vacuum force on meniscus

✓ Force caused by reduced pressure on the rear of the meniscus

✓ This force pulls the meniscus to the left

 $\checkmark F_v = p \cdot A = \Delta p \cdot B \cdot d$

Estimation of coating speed

✓ Stability of the meniscus:

The meniscus is stable as long as the right bound shear force is smaller than the sum of left bound forces. At maximum speed the forces are equal:

$$F_s = F_v + F_t \to v_{max} = C \cdot \left[\frac{\sigma \cdot h}{d - h} + \Delta p \cdot \frac{d}{\eta \cdot b} \right] \cdot \frac{h}{\eta \cdot b} \text{ with } C \ (d) \stackrel{\cong}{=} \text{ scaling factor#}$$

Comparison of theory and praxis

Innovation: slot die types and concepts

Modification of die lips

 p_2

Alternative design – types and concepts

 p_2

Standard

 $(p_2 - p_1) \ll (p_1 - p_0)$

 p_1

p₀

 $(p_2 - p_1) \ll (p_1 - p_0)$

Alternative design – types and concepts

Coat hanger design for tiny manifolds

 $(p_1 - p_2) + (p_2 - p_0) = (p_1 - p_0)$

Alternative design – types and concepts

Randomized predistribution

Predistribution by obstacles in the manifold Reduced flow resistance by low σ coating slot area remains uncoated or hard coated

Drying, curing & crosslinking

Coating parameters					
Coating chemistry	Coating processes	Process control	Drying		
 Rheology Viscosity Viscoelasticity Type of solvents Amount of solids Van der Waals force Sheer ratio Adhesion/Cohesion 	 Coating systems Single or multilayer coatings Direct coatings Transfer (indirect) coatings Substrate speed Layer thickness Coating accuracy 	 Process layout Tension control system Material guiding system Inline parameter control Quality control 	 Convection drying Contact drying Infrared drying Sintering NIR High frequency UV crosslinking systems 		
Substrate	Pretreatment	Environment	Finishing		
 Surface tension Dimension stability Surface structure Contact angle 	CoronaPlasmaCleaning	HumidityTemperatureInert conditions	CalendaringEmbossingSlitting		

Motivation – general tasks of drying

Substrate Coating Heat transfer Vapor removal Evaporating solvent

Relevant parameters:

- ✓ Solid heat capacity
- ✓ Solvent heat capacity
- ✓ Solvent evaporation energy
- ✓ Solvent evaporation speed

 \rightarrow Seems to be trivial, but dryer technologies differ exactly in handling these tasks

Solvent

Solvent	Molar mass (g/mol)	Boiling point (°C)	Vapor pressure at 20°C (mbar)	Vapor pressure at 50°C (mbar)	Evaporation energy (kJ/kg)	Heat capacity (kJ/kg*K)	Surface energy at 20°C (mN/m=dyn/cm)
Water	18	100	23	123	2256	4.2	71.9
Methanol	32	65	129	535	1100	2.5	22.5
Ethanol	46	78	59	280	840	2.4	21.6
1-Proponol	60	97	20	112	750	2.8	23.0
2-Proponol	60	82	43	225	650	2.7	21.0
Acetone	58	56	246	830	525	2.2	22.8
MEK	72	80	105	373	447	2.2	24.6
NMP	99	203	0.3	2.9	511	2.1	40.9
Ethylacetate	88	77	98	380	362	1.9	23.0
Toluene	92	111	29	124	414	1.7	28.5

Heat capacity

Evaporation energy

Drying time

An isolating air layer forms just on top of the coating layer.

- ✓ This layer is hardly moving and thereby hinders the heat transfer as well as the solvent evaporation.
- ✓ It has to be broken by sufficient air flow without sacrificing the coating surface.

Drying time: heat transfer coefficient

- \checkmark The heat transfer coefficient α describes energy transfer from hot air to liquid
- ✓ Energy transfer \dot{Q} can be calculated in fair approximation from Reynolds number R_e , Prandtl numer P_R and Nusselt number N_U

$$\checkmark \propto = \frac{\dot{Q}}{A(TD - TO)}$$
 $R_e = \frac{wD}{v}$ $P_r = \frac{v}{a}$ $N_u = f(Re, Pr)$

An empirical function Nu = f (Re, Pr) is given in the literature for single slot nozzle and slot nozzle arrays

✓ From
$$N_u = \alpha \cdot \frac{D}{\lambda}$$
 then derive α and \dot{Q}

Drying time

- ✓ Drying time depends on the solvent evaporation rate at demanded temperature (sufficient energy transfer to achieve this temperature may be presupposed).
- ✓ A decisive factor for evaporation rate is vapor pressure. If drying is allowed near the solvent boiling temperature, there is no difference in vapor pressure for all solvents.
- ✓ But if by other reasons the drying temperature is limited, there are huge differences in vapor pressure.
- ✓ So the issue is to find the vapor pressure and evaporation rate for the given solvent at demanded temperature.

Vapor pressure

Vapor pressure can be calculated for any solvent at any temperature, if 2 pairs of pressure and temperature are known:

Clausius-Clapeyron: log $p = K_1 + \frac{K_2}{T}$

- ✓ Such pairs of p and T are available in the literature for any solvent e.g. p (20°C) and T (1013 hPa).
- ✓ Online excel-sheets are available to calculated the vapor pressure for any solvent at any temperature from two pairs (p/T).

Drying time, calculation of evaporation rate

- ✓ Vapor pressure is one factor of evaporation rate, but not the only one.
- Other than for vapor pressure there is no simple way to calculate the evaporation rate for any solvent at the demanded temperature.
- ✓ Based on a modified Hertz-Knudsen approach, the evaporation rate of any solvent at any temperature can be estimated (Coatema IP).

$$\checkmark Z \sim (P_s - Pp) \cdot \sqrt{\frac{M_r}{T}}$$

✓ But still there are other influencing factors unknown (like the matrix of solids). Such factors have to be determined experimentally.

Calculation example

This is a practical example of a real calculation of dryer length for a 900 μ m wet coating based on solvent xylene at drying temperature 120°C.

Sufficient energy transfer is supposed.

The result was verified by trial.

Coating data:					
Coating thickness wet	900 µm				
Solvent xylene	65%				
Pure solvent thickness wet	585 µm				
Specific weight xylene	0.88 g/cm ³				
Solvent grammage	514.8 g/m²				
Web speed	0.13 m/min				
Evaporation data:					
Vapor pressure xylene at 20°C	880 Pa				
Boiling temperature xylene	140°C				
Vapor pressure at 120°C	56180 Pa				
Relative molar mass xylene	106.17				
Evaporation rate (according to Coatema method)	1.64 g/m²s				
Result (from web speed, grammage, evaporation rate):					
Dryer length	0.68 m				

Diffusion limit and skinning

- ✓ Drying is limited by diffusion
 (at least in the final state of low residual solvent content).
- ✓ If the internal diffusion is slower than the evaporation from the surface, then a skin may be created.
- The skin acts as a barrier. The remaining diffusion through the skin may be slower than the wet diffusion by many orders of magnitude.

So the initial evaporation must be reduced by low temperature and/or by partially saturated atmosphere. Despite reduced evaporation the total drying time then may be shorter than at full initial evaporation.

Dryer design

- ✓ Downweb temperature profiles can be realized by partitioning the dryer in different zones with different drying parameters.
- But temperature uniformity is difficult.
 Possible cause: Mixing of hot and cool air at unintended leakages by Venturi effect.
- Experience shows, that there is always a compromise:
 Good temperature uniformity requires low homogeneous air flow. High air flow results in less temperature uniformity.

Dryer design: surface deterioration

 Air flow removing the evaporating solvent may be laminar or turbulent.

Fluctuations of the flow may deteriorate the surface of a low viscous liquid causing wavy or stochastic structures.

For rough estimation it may be assumed, that 10% fluctuations of the dynamic (impact) pressure of the air flow compensate the hydrostatic pressure difference caused by surface structures of the low viscous liquid:

$$10\rho_{liquid} \cdot g \cdot h = 1/2 \cdot \rho_{air} \cdot v_{max}^2 \qquad v_{max} = \sqrt{20\left(\frac{\rho_{liquid}}{\rho_{air}}\right)} g \cdot h$$

→ Result: orange skin of 1 μ m deterioration depth would be created by an air flow of 0.5 m/sec with superimposed fluctuations of 10%.

Nonuniform air flow with 10% fluctuations

Coating with orange skin surface (exaggerated)

Dynamic effects being influenced by viscosity are not calculated. So the estimation holds for very low viscous liquids only.

Dryer design

Practical example: measured air speed in different dryers

Dryer	Setting	v _{air} at slot exit [m/s]	v _{air} at web surface [m/s]	Remarks
SC 12 30 cm wide mini hot air dryer with slots from above	100%	4.7	0.8	7 slots 260 x 7 mm² Slot length = web width Only from top values measure at first slot
CC 08 50 cm wide hot air dryer with slots from above and below	100%	4.6	1.6	48 slots 83 x 5 mm² 24 from top 24 from bottom
SM 21 50 cm wide hot air floating dryer with 180°-shifted air cusion nozzles from above and below	100%	25		8 nozzles from top 8 nozzles from bottom 3 slots for each nozzle Center 800 x 7 mm ² Sides 800 x 4 mm ²

From the 100% setting the air speed can be reduced to any intended value by changing the ventilator settings and/or reducing the slot width. Surface deterioration thus can be avoided.

Dryer design: hot air

- Heating and vapor transport combined
- Bulk heating by thermal conductivity from surface
- ✓ Isolating layer to be overcome by air flow
- ✓ High air flow deteriorates surface
- ✓ Temperature easy to limit
- 🗸 Slow

Dryer design: near-infrared (NIR)

- Heating and vapor transport separated
- ✓ Selective bulk heating by absorption
- \checkmark Absorption dependent on λ
- \checkmark Overheating and uniformity to be controlled
- ✓ Fast, if applicable
- ✓ Wavelength range 780 nm 3 µm

Dryer design

Wing shaped slot dryer

Wing shaped nozzle dryer with different nozzles

Simple slot dryer

Combined functions of heating and vapor transport
 Bulk heating by heat transfer from the surface
 Overheating easily avoided by limited air temperature

Dryer design

Slot dryers with adjustable slots easy to clean

Drying topics – drying technologies

Hot air technology

Hot air technology

Nozzle dryers modul Dry with shifted nozzles and wing shaped blow boxes

Hot air technology

Floating dryer with 180°-shifted air cushion nozzles

Single 3-slot spoiler nozzle (option: venturi nozzle)

- I_0 Intensity in
- I_1 Intensity out
- a Absorption coefficient
- x Layer thickness

IR technology – combined hot air / IR dryer

Comparison

Summary:

Short wave NIR can be of great advantage, but only if applicable.

Applicability depends on coating liquid and substrate.

(The table focusses on applicable cases)

	Hot air dryer	Heated drum- based dryer	Infrared dryer	NIR drying technology	UV/EB curing
Drying time of physical drying	> 1.0-20.0 s	Depending on substrate thickness ~> 1.0 s	0.3–10.0 s	0.02-1.5 s	Not applied
Curing time of cross-linking section	5.0–30.0 s	3.0-15.0 s	1.0-10.0 s	0.1–2.0 s	0.1-2.0 s
Dynamic capability	Preheating and standby operation while web stop required	Preheating and standby operation while web stop required	Mostly no preheating required	Fully instantaneous start/stop capability	Depending on system, extreme dynamic, often preheating required
Max. possible production speed	Mostly only up to 600 m/min (1969 fpm)	Mostly <100 m/min (328 fpm)	Max. up to <1000 m/min (3281 fpm)	At present no limit up to >2000 m/min (6562 fpm)	Mostly only up to 600 m/min (1969 fpm)
Risk regarding thermal damage	High, depending on air temperature especially at fast web stop	High, depending on drum temperature	Lower, but given depending on heat due to mass of dryer design	Low, due to working principle and dryer design	Low, due to working principle
Applied for thermal sensitive substrates	Limited to low air temperature (<80 'C/ 176 'F) results in strong reduced drying performance	Limited to low drum temperature (<80 °C/ 176 °F) results in strong reduced drying performance	Limited to low drying power due to resulting thermal stress	Possible up to high production speed due to working principle and dryer design	Possible up to high production speed due to working principle an dryer design
Risk regarding penetration of the coating materials in open substrates	Cannot be avoided due to long drying time required	Cannot be avoided due to long drying time required	Can be reduced slightly, but not completely avoided	Can be avoided, due to extreme short drying time and high energy density	Can be avoided, due to extreme short drying time and high energy density
Consumption of consumable material	High, especially due to penetration in the substrate	High, especially due to penetration in the substrate	Lower, because of low penetration	Lower, because of mostly avoided penetration in the substrate	Lower, because of mostly avoided penetration in the substrate

Dryer design: microwave technology

- ✓ Same pros and cons as IR, but even exaggerated
- Penetration depth approximately 2 cm, low absorption in thin layers (low absorption coefficient), resonator required for multiple passage
- ✓ Complex system
- ✓ Advantages for very thick layers only (e.g. foam blocks)

Drying technologies – drying with hot air technology

The Easycoater

The Easycoater

Facts

- ✓ Knife system
- ✓ Slot die system
- ✓ Screen system
- ✓ Heated vacuum table
- ✓ Integrated air heating

The Smartcoater

Todays equipment

The Basecoater 3rd Generation

The Basecoater 3rd Generation

Facts

- ✓ Cantilever rollers
- ✓ Contact cleaning
- ✓ Corona station
- ✓ Rotary screen system
- ✓ Hot air dryer
- Edge sealing & glue application

- ✓ IR dryer
- ✓ UV unit
- ✓ Slot die system
- ✓ 2 Roller system
- ✓ Delamination/Lamination
- ✓ Cross-directional cutting system

The Click&Coat[™]

The Click&CoatTM

Facts

- ✓ Working pedestral
- ✓ Edge control
- 🗸 Corona unit
- ✓ Coating module
- ✓ Lamination
- ✓ Vacuum conveyor
- Dryer (with fan air supply heater)

The Verticoater

The Verticoater

The Verticoater

Facts

- Doubleside slot die coating
- ✓ Vertical drying
- 🗸 Corona unit
- Exchangable coating modules
- ✓ Working width
 300 mm, 500 mm,
 1.000 mm

Todays equipment

The Linecoater No. of Concession, Name 030 CT 11 O And

Production line for batteries

Flotation dryer in pilotcoater concept

Flotation dryer in pilotcoater concept

Overview

Coatema battery fab concept

-

Lithium battery markets

Transportation

HEV / PHEV / EV

Heavy-Duty hybrids

Electric grid services

Grid stabilization

Uninterrupted power supply

Facts

Fuel economy
 Reduced emissions
 Energy independence

- ✓ Increase plant efficiency
- ✓ Increase grid reliability
- ✓ Energy independence

Production process Li-Ion batteries

Factory concept: master site plan

Concept – phase I

rial	preparation and storage	Anode production			Drying			lyte חקר
Mate		Cathode production					Assembly	
				CUB				
Shipment	Fin	al storage	Degassing	Formation		Aging	Pre-Formation	Resting

Most relevant energy flows

Production steps

Single side step: coating / drying / cooling

Proof of concept

Overview on layouts

Production steps

Double side step: coating / drying / cooling

The Basecoater

Proof of concept

Overview on layouts

Overview on layouts

The Basecoater

The Basecoater 3rd Generation

The Linecoater

The Click&Coat[™] – overview drawing

The Click&Coat[™] – overview drawing

The Click&Coat[™] Steel layout

The Click&Coat[™] Steel layout

Production line for fuel cells – 1000 mm working width

Basecoater for batteries

Partners:

FJ	F	UT	A	V	I	S
COM	PLE	XITY	SIM	PL	F	ED

www.pem.rwthaachen.de/cms/PEM/Forschung/Projekte /~ntuk/InTreS/

EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung

2011 EFRE.NRW Investitionen in Wachstum und Beschäftigung

Custom made solution

Do not hesitate to contact us!

Anything missing?

Let us know and we will make it happen!

Our R&D centre is worldwide the most versatile centre for coating, printing and laminating.

Sales department: sales@coatema.de

Roseller Straße 4 | D-41539 Dormagen Phone +49 (0) 21 33 97 84 - 0 | info@coatema.de

